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The thermal response of nonablating ceramic tiles is studied by the finite-element method. A continuum model
is used to determine the thermal conductivity of porous materials. The temperature distribution for the one-di-
mensional model is compared with the available arc-jet result. Also presented are the 2D and 3D temperature
contours and the heat-flux distributions for silica tiles. The expression for the pressure distribution in a silica
tile is derived.

Introduction. The design of a thermal protection system (TPS) for higher temperature applications involves
the modeling and synthesis of various nonlinear coupled systems. The design of a TPS, which is an interface between
the entry flow environment and the spacecraft, is based on the aerothermodynamic predictions of quantities such as the
surface temperature, heat-transfer rate, shear, and pressure loads. Ablating and nonablating materials are the two impor-
tant classes of TPS used for design of the entry vehicle. A nonablating TPS is generally used on reusable vehicles.
The energy conducted into the vehicle is mimimized due to minimization of radiation from the body and low thermal
conductivity of the TPS. For the materials mentioned, the flow environment is altered by chemical reaction that occurs
on the surface of the TPS. This surface catalysis reaction increases surface heating and alters temperature gradients
within the boundary layer [1–4]. The silica tile with a black glazed surface is one of the candidate materials for a non-
ablating TPS. The low catalytic efficiency of the reaction minimizes the surface heating.

Rigid tiles are made from high-purity silica fibers, which are rigidly interconnected in a high-temperature sin-
tering process. Tiles with densities of 144 and 352 kg/m3 have been realized. The exposed tile surface is covered with
a thin glassy coating, which is black for the hottest areas of the space vehicles and white elsewhere. The tiles are
bonded to a felt pad, which, in turn, is bonded to the vehicle skin. In both bonds, a room-temperature vulcanized
(RTV) material is used. The designed gaps between the tiles make the system flexible and allow gases to vent when
required. Depending on the size of the gap, it either is kept empty or filled by a gap filler. In reentry, the flow of
gases around the vehicle changes from laminar to turbulent. The later this change, the less the total heat load. It is
therefore important that the surface of the vehicle be relatively smooth to prevent local turbulence. To minimize the
heat load, the gas fillers must be fitted perfectly in the intersections and the gaps between the tiles. The gap must be
carefully exhausted and smoothened in order to prevent surface irregularities.

In the present investigation, the temperature distribution of the TPS tiles is calculated by coupling the thermal
response and thermal conductivity programs. The thermal conductivity of the tile is determined using the model de-
scribed and the temperature distribution is predicted by a finite-element computer program with the software package
MSC NASTRAN/PATRAN. An expression is derived for the internal pressure in the silica tiles.

Thermal Conductivity. The tiles consist of porous material. The structure shape of the solid matrix varies
within wide limits. It may, for instance, be composed of cells, fibers, or graves. In general, a uniform distribution of
void sizes is nonexistent. Because of the complexities of the mechanism involved in the diffusion processes through
the irregular void configuration in porous bodies, the subject is not yet completely developed. We attempt here to de-
rive an expression for the thermal conductivity of the tiles, assuming that they are continuous.

We consider a porous body with the bound matter filling the voids in an unsaturated state. This matter con-
sists of liquid, vapor, and inert gas at a temperature above 273 K and of ice, supercooled liquid, and gas at a tem-
perature below 273 K. There are vapor and air in the pores and capillaries of the porous body [5]. Since we are

Journal of Engineering Physics and Thermophysics, Vol. 79, No. 6, 2006

aKarunya University, Coimbatore-641114, India; email: kn_shukla@rediffmail.com; bCollege of Engineering,
Thiruvananthapuram-695016, India. Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 6, pp. 107–113, Novem-
ber–December, 2006. Original article submitted November 16, 2005; revision submitted January 3, 2006.

1062-0125/06/7906-1157 2006 Springer Science+Business Media, Inc. 1157



interested in high-temperature application, it is reasonable to assume that the pores are filled with air/inert gas. The
heat transfer can be attributed to heat conduction in both solids and gas and to radiation.

Thermal conductivity of gas. The thermal conductivity of a gas can be expressed as

λg = 
λa

1 + 2βKn
 . (1)

Here, λa is the thermal conductivity of a gas at atmospheric pressure and Kn is the Knudsen number, defined as the
ratio of the mean free path lg of the gas enclosed in the pores to the pore diameter δ (Kn = lg ⁄ δ). The value of lg is
determined by the following expression given by Sutherland [6]:

lg = 
C1 (Pg)

1 + C2
 ⁄ T

 ,

where the constants C1 and C2 for different gases have been tabulated by Ardenne [7]. The correcting factor β is a
function of the ratio of the specific heats of the gas at constant pressure and constant volume and can be taken as
1.63.

The radiative thermal conductivity is calculated using the diffusion model described by Howell and Siegel [8]:

λr = 
16σn

2

3E
 Tr

 3
 , (2)

where E is the extinction coefficient and

Tr
 3

 = 
(T 2

 + Ta
 2) (T + Ta)
4

 . (3)

We can thus determine the total thermal conductivity of the bulk material as a linear combination of the con-
ductivities of the solid, gas, and radiation as suggested by Stewart and Leiser [10]:

λt = η f1 (Vs) λs + (1 − Vs) λg + τ f2 (Vs) λr , (4)

where f1(Vs) = Vs and f2(Vs) = 1 ⁄ Vs are the weighting factors.
Linear dependences for parameters η and τ result in the following expressions [9]:

η = 1.93Vs ,

τ = − 8.571 (1 − Vs) + 0.84

τ = 1.2
     

for porosity   > 0.84 ,

for porosity   < 0.84 .

Fig. 1. Thermal conductivity of TPS tile as a function of temperature at pres-
sure P = 0.0001 (a), 0.01 (b), and 1 atm (c): 1) gas; 2) radiative; 3) total. T,
K; λ, W/(m⋅K).
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The two adjusted parameters η and τ, which relate to solid conduction and radiation heat transfer, were found
to be independent of fiber composition and structure and to depend only on the solid volume fraction (on the porosity).

Effective thermal conductivity values for silica insulations at different pressures are shown in Fig. 1a, b, and
c. The thermal conductivity of a solid [0.005 W/(m⋅K)], which is not shown in the figures, is taken into account when
the total thermal conductivity is calculated. The computations show that the overall effective thermal conductivity pro-
file is substantially influenced by the radiation thermal conductivity λr at a high temperature. Equation (4) predicts val-
ues of the conductivity for P < 1 atm that are similar to those determined by the Ames Engineering Model [10]. For
P > 1 atm, this expression gives higher values 

Heat-Transfer Analysis. The primary objective of the study is to predict the thermal response of the reusable
surface insulations (RSI). Aerothermal heat flux is applied on the surface of the RSI for a fixed time and then it is
withdrawn. Heat is reradiated from the surface to deep space as well as conducted through the TPS component. The
RSI and the TPS tube are porous ceramic materials. Their emittance [8] and specific heat are functions of temperature
and pressure. If required, the thermal properties of the model are extrapolated as linear.

The governing equation for heat transfer in a solid is written as

ρcp 
∂T

∂t
 = ∇ (λ∇T) (5)

and satisfies the boundary and initial conditions

T (x, 0) = T0 , (6)

λ 




∂T

∂x



x=a

 = q − εσT
 4

 , (7)

λ 




∂T

∂x



x=b

 = 0 . (8)

For design purposes, generally a 1D thermal analysis is sufficient to determine the transient temperature re-
sponse near the center of the tiles for stagnation heating. Aero-thermal heat flux can be expressed in the form of a

Fig. 2. Transient temperature in a silica tile for the first seven nodes with 1D
analysis. t, sec; T, K.

Fig. 3. Comparison of calculated temperature (1) with measurement results (2)
at the first (I) and second (II) nodes. t, sec; T, K.

1159



unit step function [q(t) = qU(t—t0)], where the heat flux is withdrawn from the moment t0. The accuracy in evaluation
of the thermal conductivity plays a major role in determining the accuracy of the calculated temperature response.

The tile is divided into 20 nodes of equal size. Figure 2 shows the temperature response in depth for the first
seven nodes of the TPS tiles when a heat flux of 400 kW/m2 is applied at one end. The numbers in the figure cor-
respond to the node numbers. The rod absorbs a part of the heat flux and the remainder is reflected. The rod takes a
temperature of 1720 K due this high heat flux.

The following properties of the silica tile were used to predict the thermal conductivity for the insulation ma-
terial through Eqs. (1)–(4): ρ = 352 kg/m3; Vs = 0.8; δ = 0.8 µm; E = 14,900 m–1. The values of the thermal con-
ductivity at different temperatures were used in the finite-element program to determine the temperature distributions
in the tiles. This analysis helps us to find the way a tile responds to a high heat load from one end to another.

Figure 3 gives a comparison of the present results with the measured values of Stewart and Leiser at nodes
1 and 2, respectively [10]. The present software results in a temperature that is about 5% higher than the measured
one, which may be erroneous due to uncertainty in the measurement.

For a detailed study, a 2D finite element analysis [11] was carried out to determine the temperature response
of the silica tiles. Figure 4a presents the nodal discretization of the silica tile as used for the measurement in the ex-
periment of Stewart and Leiser [10]. Figure 4b shows the time history of the temperature in the tile in depth for the
corresponding nodes on the basis of the 2D model. Within a few seconds, the tile reaches a high temperature of 1720

Fig. 4. 2D rectangular elements of a silica tile (a) and transient temperature for
the corresponding nodes (b). t, sec; T, K.

Fig. 5. Heat flux (a) and temperature (b) distributions on a silica tile. q, kW/m2;
T, K.
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K. After 400 seconds, the temperature begins to decrease due to reduction in the heat load. The thermal response from
the 2D analysis is very similar to that of the 1D analysis. The initial and boundary conditions for the 2D analysis are
the same as given by Eqs. (6)–(8). The other two edges are assumed to be insulated.

As the conditions on the surface for the given analysis, the pressure P = 0.01 atm and heat flux q = 400
kW/m2 were taken. Predictions were made with thermal conductivity values obtained by using Eq. (4). The measured
in-depth temperature histories were compared with the earlier results of Stewart and Leiser. The results obtained give
a very good agreement with these experimental values.

The heat flux applied to the material varies with time. Here, the analysis was done for a time period of 1000
sec. After 400 sec, the heat-flux value is zero. Hence, the surface temperature reaches 1720 K for 400 sec and then
begins to decrease. The heat flux penetrates through the material and Fig. 5a shows the variation of its intensity along
the tile material at the moment of 1000 sec. The corresponding temperature contours are shown in Fig. 5b. It is seen
that the maximum temperature is 727 K, which means that the temperature decreases to the moment of 1000 sec.

Refractory Vent. The internal pressure of the gas vented through the porous tiles can be described by the
Darcy law as

m
.
 = − 

πD
2

4
 
Kρ
µ

 
dP
dx

(9)

or, using the ideal gas law

ρ = 
M
RT

 P , (10)

as

m
.
 = − 

πD
2

4
 
M
RT

 
KP
µ

 
dP
dx

 . (11)

Here, we have assumed constant internal temperature and negligible gas storage in the vent [12].
To account for increased mass flow due to slip, the effective porosity is expressed by the following relation:

K = K0 

1 + 

b
P



 ,

where b is a constant. Substituting this expression into (11), we can integrate the obtained equation for the isothermal-
ity condition

Fig. 6. Calculated transient pressure for a typical trajectory for different values
of the parameter A: 1) A = 1; 2) 5; 3) 7. t, sec; P, Pa.
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m
.
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πD
2
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M

RT
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P
2
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2

2
 + b (P − Pext)




 . (12)

Since

m = Vρ = 
M
RT

 VP ,

Eq. (12) can be rewritten as

dP

dt
 = 

AK0

µ
 




P
2
 − Pext

2

2
 + b (P − Pext)




 , (13)

where

A = 
πD

2

4
 

1
LV

 .

For the reentry environment, Pext is the prescribed function of time. Equation (13) can be numerically integrated to de-
termine the internal pressure inside the porous tiles. Figure 6 shows the predicted pressure experienced by a space re-
covery module with some values of A for a typical trajectory. Depending upon the maximum pressure differences
allowed, the vent dimension could be easily determined.

Conclusions. The computerized thermal analysis offers a powerful tool for time and cost effective estimation
of the performance of RSI or TPS tiles. Some of its applications have been demonstrated in the current study. The
models used were compared, whenever possible, with the experimental arc-jet data.

The expression for thermal conductivity was derived based on the continuum theory of a porous body. The
heat-conduction equations resulted in successful calculation of the temperature response in depth of silica tiles sub-
jected to a very high heat flux. The assumptions used in the computations included an adiabatic back wall, low surface
catalysis, and absence of convective cooling during soaking out.

An analytical expression for the pressure distribution inside the tile, from which one can determine the vent-
ing area for a required pressure difference, is derived.

This work is a part of the M. Techn. Thesis of A. Pradeep (carried out at the Vikram Sarabhai Space Center
(VSSC), Trivandrum), who thanks Shree Shailendra Tiwari for help in the use of the MSC NASTRAN/PATRAN
package and Shree Haridas for the computer facilities of VSSC.

NOTATION

cp, specific heat at constant pressure; D, tile diameter; E, extinction coefficient; K, permeability; K0, effective
permeability; Kn, Knudsen number; L, thickness; M, molecular weight; m, mass; m

.
, mass flow rate; n, refractive index;

P, pressure; q, heat flux; R, gas constant; T, temperature; V, gas volume; Vs, volume fraction of solid; x, coordinate;
σ, Stefan–Boltzmann constant; β, density scale factor; δ, pore diameter; ε, emittance; η and τ, bonding factors; λ, ther-
mal conductivity; µ, viscosity; ρ, density. Subscripts: a, atmosphere; ext, external; g, gas; r, radiation; s, solid; t, total.
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